$In_2Mo_{15}Se_{19}$: Nouvel Exemple de Structure à Motifs Mo_6Se_8 et Mo_9Se_{11}

PAR MICHEL POTEL, ROGER CHEVREL ET MARCEL SERGENT

Laboratoire de Chimie Minérale B, associé au CNRS 254, Université de Rennes, Campus de Beaulieu, avenue du Général Leclerc, 35042 Rennes CEDEX, France

(Reçu le 21 avril 1980, accepté le 21 octobre 1980)

Abstract

In₂Mo₁₅Se₁₉ crystallizes in the space group R3c, with $a_R = 20.159$ (3) Å, $\alpha_R = 27.808$ (7)° [$a_H = 9.688$ (3), $c_H = 58.10$ (7) Å], Z = 2, $V_R = 1574.4$ Å³, $d_m = 6.59$ (5), $d_x = 6.68$ Mg m⁻³. The structure has been solved by direct methods and refined by least squares to R = 0.055 ($R_w = 0.046$) for 942 independent reflections. The structure involves the stacking of $-Mo_6Se_8$ -In $-Mo_9Se_{11}$ -In– units which run along the trigonal c axis. This distribution of Mo₆Se₈ and Mo₉Se₁₁ is a new type of stacking of these unit blocks.

Introduction

Dans une publication précédente, nous avons présenté la structure d'une phase originale $In_{3}Mo_{15}Se_{19}$ à clusters mixtes Mo_6 et Mo_9 inclus dans des motifs Mo_6Se_8 et Mo_9Se_{11} (Grüttner, Yvon, Chevrel, Potel, Sergent & Seeber, 1979). Nous décrivons ici la structure cristalline de $In_2Mo_{15}Se_{19}$, structure type de nombreux composés (Chevrel, Potel, Sergent, Decroux & Fischer, 1980), et qui possède un nouveau type d'empilement des motifs Mo_6Se_8 et Mo_9Se_{11} .

Partie expérimentale

In₂Mo₁₅Se₁₉ est préparé à partir d'un mélange In₂Se₃ + 15 Mo + 16 Se chauffé dans un tube de silice scellé sous vide, à une température de 1123 K pendant 48 h, suivi d'un recuit à 1473 K. Notons que, par réaction à 1423 K, seule la phase In_{$\sim 3}Mo₁₅Se₁₉ est obtenue. Des$ monocristaux, de forme parallélépipédique, croissentpar recuit prolongé à une température de l'ordre de1523 K.</sub>

L'étude cristallographique préliminaire a été menée sur chambre photographique de Weissenberg et de précession. L'enregistrement des intensités a été effectué sur diffractomètre automatique CAD-4 Nonius. Les paramètres de maille ont été affinés par une méthode de moindres carrés à partir de 25 angles de diffraction optimisés sur diffractomètre automatique.

0567-7408/81/051007-04\$01.00

Les conditions d'enregistrement sont rassemblées dans le Tableau 1. Les intensités, exploitées par le programme *MAXE* (Le Marouille, 1972), sont corrigées des facteurs de Lorentz et de polarisation, puis de l'absorption en assimilant le cristal à une sphère de volume équivalent. Seules les 942 réflexions répondant au critère $I > \sigma(I)$ sont conservées pour la détermination structurale.

La structure a été résolue par méthode directe, à l'aide du programme *MULTAN* (Germain, Main & Woolfson, 1971). La solution présentant la meilleure figure de mérite nous a permis de placer tous les atomes: deux Mo et deux Se en position 12(f), un Mo et un Se en position 6(e), deux Se et un In en position (4c). L'affinement par moindres carrés et matrice totale (Prewitt, 1966) des coordonnées de position ainsi que des facteurs de température isotrope, puis anisotrope, converge vers les valeurs R = 0.055 et $R_w = 0.046$ avec $R = \sum |\Delta F|/\sum |F_o|$ et $R_w = |\sum (\Delta F)^2 / \sum w F_o^2|^{1/2}$.* Le facteur de pondération w est calculé à partir de la statistique de comptage (McCandlish, Stout & Andrews, 1975) et les facteurs de diffusion atomique à

Tableau 1. Conditions d'enregistrement de In₂Mo₁₅Se₁₉

Dimensions du cristal utilisé	$0,05 \times 0,05 \times 0,07$ mm
Coefficient linéaire d'absorption	$\mu = 31,1 \text{ mm}^{-1} (\bar{\mu}R \simeq 1,1)$
Radiation utilisée	Mo $K\alpha$ ($\lambda = 0,71069$ Å)
Monochromateur	Lame de graphite
Distance cristal-détecteur	173 mm
Limite d'enregistrement	$\theta \leq 32^{\circ}$
Balayage	$\omega - 2\theta$
Amplitude de balayage	$1 + 0.35 tg\theta$ (°)
Ouverture	$2 + 0.35 tg\theta (mm)$
Nombre de réflexions non nulles	
enregistrées	1213
Nombre de réflexions indépendantes	
$[I > \sigma(I)]$	942
Valeur finale de R	0,055
Valeur finale de R_w	0,046

© 1981 International Union of Crystallography

^{*} Les listes des facteurs de structure et des paramètres thermiques anisotropes ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 35838: 8 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

 Tableau 2. Coordonnées atomiques (×10⁵) et facteurs de température équivalents

	Position	x	у	z	B_{eq} $(\dot{A}^2)^*$
Mo(1)	12(f)	49988 (17)	68888 (19)	37056 (20)	0,57
Mo(2)	12(f)	22250 (18)	4574 (18)	36373 (18)	0,49
Mo(3)	6(<i>e</i>)	40973 (24)	9027	$\frac{1}{4}$	0,53
Se(1)	12(f)	18982 (21)	80340 (21)	55668 (21)	0,55
Se(2)	12(f)	53807 (20)	92007 (21)	18467 (20)	0.78
Se(3)	6(e)	5981 (26)	44019	<u>3</u> 4	0,59
Se(4)	4(c)	44543 (5)	44543 (5)	44543 (5)	0,80
Se(5)	4(c)	17609 (5)	17609 (5)	17609 (5)	0,80
In	4(<i>c</i>)	11425 (8)	11425 (8)	11425 (8)	5,18

$${}^{\mathsf{F}}B_{\mathsf{éq}} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \, \mathbf{a}_{i} \, \mathbf{a}_{j}.$$

partir de la formulation de Vand, Eiland & Pepinsky (1957) tabulée par Moore (1963) et corrigés de la dispersion anomale (*International Tables for X-ray Crystallography*, 1974).

A ce stade, il apparaît que le facteur de température de In est anormalement élevé $(B_{\acute{eq}} = 5.18 \text{ Å}^2)$. Les tentatives d'explication de cette valeur sont demeurées vaines: affinement du taux d'occupation, délocalisation, affinement dans le groupe non centrosymétrique R3c[dédoublement de la position 4(c) en deux positions 2(a)]. Dans ces conditions, il est vraisemblable que l'on doit attribuer ce fait à une anharmonicité de la vibration de l'indium. Les coordonnées atomiques, les facteurs de température anisotropes ainsi que leurs écarts types sont rassemblés dans le Tableau 2.

Description de la structure

Les motifs pseudo-moléculaires Mo_6Se_8 et Mo_9Se_{11} forment la trame de la structure. Ils s'empilent sur l'axe ternaire suivant la séquence: $-In-Mo_6Se_8-In-Mo_9Se_{11}-In-$. $In_2Mo_{15}Se_{19}$ s'apparente ainsi à Mo_6Se_8 (Bars, Guillevic & Grandjean, 1973) et aux structures dérivées MMo_6X_8 [par exemple, ici $InMo_6S_8$ (Chevrel, Sergent & Yvon, 1981)] par substitution de la moitié des motifs Mo_6Se_8 (ou S_8) par les motifs Mo_9Se_{11} . Cette filiation apparaît sur la Fig. 1(a) et (b), projection des deux structures sur le plan (1120) du repère hexagonal.

Motifs Mo_6Se_8 et Mo_9Se_{11} (Fig. 2a,b)

 Mo_6Se_8 conserve les caractéristiques géométriques décrites pour les différents composés MMo_6X_8 : cluster octaédrique Mo_6 inscrit dans un cube Se_8 . L'octaèdre est de symétrie D_{3d} , et les liaisons métalliques y sont de deux types: 2,686 Å entre Mo reliés par l'axe ternaire (notés \triangle) et 2,772 Å pour les distances Mo-Mo intertriangles (Tableau 3).

 Mo_9Se_{11} résulte de la condensation de deux motifs Mo_6Se_8 par mise en commun de trois Mo et de trois Se, conservant la symétrie ternaire. La symétrie ponctuelle

du cluster Mo₉ est D_3 (ou 32) (proche de la symétrie idéale D_{3h}). La liaison Mo(2)–Mo(2) des triangles terminaux est de 2,674 Å et celle du triangle médian Mo(3)–Mo(3) de 2,680 Å. Les distances Mo(2)– Mo(3) intertriangles sont de deux types (2,712 et 2,808 Å) rendant compte ainsi de l'écart à la symétrie idéale D_{3h} par perte du plan miroir. Les six atomes de molybdène terminaux du cluster Mo₉, ainsi que ceux du cluster Mo₆, sont en site pyramidal à base carrée de Se.

Fig. 1. Projection sur le plan (1120) hexagonal de (a) $In_2Mo_{15}Se_{19}$ et (b) $InMo_6S_{8}$.

Fig. 2. Motifs (a) $(Mo_6Se_8)Se_6$ et (b) $(Mo_9Se_{11})Se_6$.

Distances dans Mo ₆ Se ₈		Distances dans Mo _o Se ₁₁			
$[Mo(1)-Mo(1)] \land 2 \times 2.686$ (2)		[Mo(2)-Mo(2)]	$[Mo(2)-Mo(2)] \ge 2 \times 2.674(2)$		
$Mo(1) - Mo(1) 2 \times 2,772 (10)$		$[Mo(3)-Mo(3)]_{\land} 2 \times 2,680(4)$			
$\Delta(1)-\Delta(1)$	2,30	$Mo(2)_{\Delta} - Mo(3)_{\Delta}$	2,712 (5)		
Mo(1)-Se(4)	2,548 (6)	$Mo(2)_{\triangle}-Mo(3)_{\triangle}$	2,808 (6)		
Mo(1)–Se(1)	2,559 (7)	\triangle (2) $-\triangle$ (3)	2,28		
Mo(1)-Se(1)	2,590 (2)	Mo(2)-Se(5)	2,533 (5)		
Mo(1)-Se(1)	2,605 (2)	Mo(2)-Se(2)	2,582 (2)		
Mo(1)-Se(2)	2,589 (6)	Mo(2)-Se(2)	2,638 (2)		
(intermotif)		Mo(2)-Se(3)	2,715 (5)		
		Mo(2)-Se(1)	2,641 (5)		
Environnement de	e l'indium	(intermotif)			
In-Se(2)	3 × 3,162 (2)	Mo(3)-Se(3)	2 × 2,600 (2)		
In-Se(1)	3 × 3,726 (5)	Mo(3)-Se(2)	2 × 2,542 (7)		
In-Se(3)	3 × 3,800 (4)	Mo(1)-Mo(2)	3,389 (3)		
In-Se(4)	3,468 (6)	(intercluster)			
In-Se(5)	3,593 (6)				

Tableau	3. Distances	interatomiques	(Å)	dans		
$In_2Mo_{15}Se_{19}$						

Le sommet de la pyramide est occupé par un sélénium appartenant à un motif voisin Mo_6Se_8 ou Mo_9Se_{11} respectivement. Les trois molybdènes médians du cluster Mo_9 sont environnés par quatre Se et six Mo appartenant tous au même motif. Les séléniums de Mo_9Se_{11} sont de deux types: huit d'entre eux pontent chacun une face triangulaire Mo_3 (de la même manière que les huit Se de Mo_6Se_8 pontent les huit faces de l'octaèdre Mo_6), et les trois autres coiffent chacun deux faces triangulaires Mo_3 à arête commune.

La cohésion tridimensionnelle du cristal est assurée, comme dans les composés MMo_6X_8 , par les liaisons Mo-Se intermotifs et par des liaisons métalliques plus longues interclusters qui sont ici de 3,389 Å. La projection sur le plan (00.1) du repère hexagonal montre la disposition de ces liaisons (Fig. 3*a*) comparée à celle rencontrée dans $In_{\sim 3}Mo_{15}Se_{19}$ (Fig. 3*b*) où la symétrie ponctuelle du cluster Mo₉ est C_{3h} (3/*m*).

Environnement de l'indium (Fig. 4a)

L'environnement de l'indium est constitué d'abord par cinq plus proches séléniums formant une bipyramide triangulaire, dont le plan de base est perpendiculaire à l'axe ternaire et les deux sommets situés sur celui-ci. Les six faces de cette bipyramide sont coiffées de six Se à une distance supérieure (3,726 et

Fig. 3. Projection sur le plan de base (001) hexagonal de (a) $In_2Mo_{15}Se_{19}$ et (b) $In_{\sim 3}Mo_{15}Se_{19}$, montrant la disposition des liaisons Mo-Mo intercluster autour des clusters Mo_9 .

3,800 Å), complétant ainsi la coordination à 11 Se. In est plus fortement lié perpendiculairement à l'axe ternaire (In-3Se = 3,162 Å) que parallèlement à celui-ci (In-Se = 3,468 et 3,593 Å) ce qui se traduit par une plus forte anisotropie de l'agitation thermique suivant cet axe ($\bar{\sigma}_{\parallel} = 0,35$ Å) que perpendiculairement ($\bar{\sigma}_{\perp} = 0,19$ Å).

Discussion et conclusion

Le seul autre exemple connu de composés à clusters mixtes Mo₆ et Mo₉ est In₃Mo₁₅Se₁₉ dont la formule structurale s'écrit: In¹₂(1) In¹¹¹_x (2) (Mo₆Se₈) (Mo₉Se₁₁) (0,9 < x < 1,4). Ces motifs sont empilés sur l'axe *c* hexagonal suivant deux files distinctes (Fig. 5) de séquence:

file 1:
$$\ln_x^{III}$$
 (2)–(Mo₆Se₈)– \ln_x^{III} (2)–(Mo₆Se₈)

file 2: $-In^{1}(1)-In^{1}(1)-(Mo_{9}Se_{11})-In^{1}(1)-In^{1}(1)-$.

Il apparaît ainsi que ce composé est intermédiaire entre $InMo_6S_8$ (la structure de $InMo_6Se_8$ n'a pas été étudiée) où In est trivalent et délocalisé, et $In_2Mo_{15}Se_{19}$ où In est monovalent. Le site de In(1), aussi très particulier (Fig. 4b), est de sept Se, dont quatre plus proches forment un tétraèdre, les trois autres coiffant

Fig. 4. Environnement de In⁺ dans (a) In₂Mo₁₅Se₁₉ et (b) In_{~3}Mo₁₅Se₁₉.

Fig. 5. Projection sur le plan (1120) hexagonal de In Mo15Se19.

1010

trois faces à une distance supérieure. Ces polyèdres, associés par deux, conduisent à une vaste cage de 14 Se, dans laquelle sont piégé deux In⁺. Dans les deux structures, les distances moyennes $\langle In^+-Se \rangle$ sont comparables (3,3 Å pour In_{~3}Mo₁₅Se₁₉ et 3,4 Å pour In₂Mo₁₅Se₁₉). De même, nous retrouvons une grande agitation thermique ($B_{eq} \sim 3 \text{ Å}^2$) fortement anisotrope ($\bar{\sigma}_{\perp} = 0,22 \text{ Å}; \ \bar{\sigma}_{\parallel} = 0,10 \text{ Å}$).

 $In_2Mo_{15}Se_{19}$ est la structure type d'une grande famille de composés $M_2Mo_{15}X_{19}$ (M = K, Ba, In, Tl, X = Se; M = K, Rb, Cs, X = S) qui sont conducteurs métalliques et présentent une transition supraconductrice ($T_c = 3.3$ K pour K₂Mo₁₅S₁₉).

Références

BARS, O., GUILLEVIC, J. & GRANDJEAN, D. (1973). J. Solid State Chem. 6, 48–57.

- CHEVREL, R., POTEL, M., SERGENT, M., DECROUX, M. & FISCHER, Ø. (1980). Mater. Res. Bull. Soumis.
- CHEVREL, R., SERGENT, M. & YVON. K. (1981). A paraître.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- GRÜTTNER, A., YVON, K., CHEVREL, R., POTEL, M., SERGENT, M. & SEEBER, B. (1979). Acta Cryst. B35, 285-292.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
- LE MAROUILLE, J. Y. (1972). Thèse 3è cycle, Rennes.
- McCandlish, L. E., STOUT, G. H. & Andrews, L. C. (1975). Acta Cryst. A31, 241-245.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169-1175.
- PREWITT, C. T. (1966). SFLS-5. A Fortran IV Full-Matrix Crystallographic Least-Squares Program. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- VAND, V., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303-311.

Acta Cryst. (1981). B37, 1010-1017

The Structure and Polytypes of α -CaSiO₃ (Pseudowollastonite)

By Takamitsu Yamanaka and Hiroshi Mori

Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Tokyo, Japan

(Received 15 July 1980; accepted 22 October 1980)

Abstract

A single crystal of α -CaSiO₃ (pseudowollastonite) was grown by using a flux of CaCl₂. In the grown samples, four-layer, six-layer and disordered stacking polytypes were found from X-ray photographs. The four-layer polytype was dominant. The structure of the four-layer type was analyzed and the crystal data were found to be: space group $C\bar{1}$, Z = 24, a = 6.853 (3), b =11.895 (5), c = 19.674 (13) Å, $\alpha = 90.12$ (3), $\beta =$ $90.55(3), \gamma = 90.00(3)^{\circ}; R = 0.040$ for 1935 reflections. The structure is characterized by four layers, one of which is composed of ternary rings of three tetrahedra of Si₃O₉ and a seemingly octahedral layer. Thus the structure is similar to that of SrGeO₃, except that the latter is a six-layer type. The ternary rings are elongated in the stacking direction, while the octahedral layers are contracted in the same direction. Accordingly, Ca atoms are coordinated with eight O atoms instead of six. Space groups of possible polytypes of a-CaSiO₃ composed of ideal ternary rings and octahedral layers have been derived by stacking operators and the enumeration of the distinct polytypes has also been conducted by the multiplication of these operators. Four-layer polytypes occur in two distinct space groups and have only four structure types including enantiomorphs. Six-layer polytypes have nine space groups and ten structure types excluding enantiomorphic and congruent structures belonging to the space groups.

Introduction

 α -CaSiO₃, pseudowollastonite, one of the CaSiO₃ polymorphs, is commonly found in slags or cement materials. However, the structure of α -CaSiO₃ has never been analyzed because it was difficult to prepare single crystals large enough for X-ray studies, while structures of the other polymorphs of CaSiO₃, triclinic β -CaSiO₃ (wollastonite), monoclinic β -CaSiO₃ (parawollastonite) and high-pressure CaSiO₃, have been studied by Ito (1950), Buerger & Prewitt (1961), and Trojer (1968, 1969).

Jeffery & Heller (1953) carried out an X-ray study of the diffraction symmetry of α -CaSiO₃. Hilmer (1963) and Dornberger-Schiff (1962) discussed the symmetry and the structure of α -CaSiO₃ by using the structurally analogous material SrGeO₃ in order to overcome difficulties encountered in the sample preparation.

In the present study, the successful growth of a single crystal of α -CaSiO₃ enables us to discuss the structure

0567-7408/81/051010-08\$01.00

^{© 1981} International Union of Crystallography